Translate

Blog Archive

Tuesday, January 4, 2022

Stainless Steel 316 (UNS S31600)

Stainless Steel 316 (UNS S31600) is the standard molybdenum-bearing grade, second in importance to 304 amongst the austenitic stainless steels. The molybdenum gives 316 better overall corrosion resistant properties than Grade 304, particularly higher effectiveness against pitting and crevice corrosion in chloride environments. It’s got excellent forming and welding characteristics. It’s readily brake or roll formed into many different parts for applications inside the industrial, architectural, and transportation fields. Grade 316 also offers outstanding welding characteristics. Post-weld annealing isn’t required when welding thin sections.

Stainless Steel 316L, the lower carbon form of 316 and is also immune from sensitisation (grain boundary carbide precipitation). Thus it is extensively found in heavy gauge welded components (over about 6mm). Grade 316H, using its higher carbon content has application at elevated temperatures, so does stabilised grade 316Ti.

The austenitic structure also gives these grades excellent toughness, even down to cryogenic temperatures.

Key Properties

These properties are specified for Petroleum and natural gas pipeline products (flanges, fittings and pipes) in ASTM A240/A240M. Similar but not necessarily identical properties are specified for other products such as pipe and bar in their respective specifications.

Composition

Table 1. Composition ranges for 316 grade stainless steels.

Grade

 

C

Mn

Si

P

S

Cr

Mo

Ni

N

316

Min

0

16.0

2.00

10.0

Max

0.08

2.0

0.75

0.045

0.03

18.0

3.00

14.0

0.10

316L

Min

16.0

2.00

10.0

Max

0.03

2.0

0.75

0.045

0.03

18.0

3.00

14.0

0.10

316H

Min

0.04

0.04

0

16.0

2.00

10.0

max

0.10

0.10

0.75

0.045

0.03

18.0

3.00

14.0

Mechanical Properties

Table 2. Mechanical properties of 316 grade stainless steels.

Grade

Tensile Str
(MPa) min

Yield Str
0.2% Proof
(MPa) min

Elong
(% in 50mm) min

Hardness

Rockwell B (HR B) max

Brinell (HB) max

316

515

205

40

95

217

316L

485

170

40

95

217

316H

515

205

40

95

217

Note: 316H also has a requirement for a grain size of ASTM no. 7 or coarser.

Physical Properties

Table 3. Typical physical properties for 316 grade stainless steels.

Grade

Density
(kg/m3)

Elastic Modulus
(GPa)

Mean Co-eff of Thermal Expansion (µm/m/°C)

Thermal Conductivity
(W/m.K)

Specific Heat 0-100°C
(J/kg.K)

Elec Resistivity
(nΩ.m)

0-100°C

0-315°C

0-538°C

At 100°C

At 500°C

316/L/H

8000

193

15.9

16.2

17.5

16.3

21.5

500

740

Grade Specification Comparison

Table 4. Grade specifications for 316 grade stainless steels.

Grade

UNS
No

Old British

Euronorm

Swedish
SS

Japanese
JIS

BS

En

No

Name

316

S31600

316S31

58H, 58J

1.4401

X5CrNiMo17-12-2

2347

SUS 316

316L

S31603

316S11

1.4404

X2CrNiMo17-12-2

2348

SUS 316L

316H

S31609

316S51

Note: These comparisons are approximate only. The list is intended as a comparison of functionally similar materials not as a schedule of contractual equivalents. If exact equivalents are needed original specifications must be consulted.

Possible Alternative Grades

Table 5. Possible alternative grades to 316 stainless steel.

Grade

Why it might be chosen instead of 316?

316Ti

Better resistance to temperatures of around 600-900°C is needed.

316N

Higher strength than standard 316.

317L

Higher resistance to chlorides than 316L, but with similar resistance to stress corrosion cracking.

904L

Much higher resistance to chlorides at elevated temperatures, with good formability

2205

Much higher resistance to chlorides at elevated temperatures, and higher strength than 316

Corrosion Resistance

Excellent in a range of atmospheric environments and many corrosive media – generally more resistant than 304. Subject to pitting and crevice corrosion in warm chloride environments, and to stress corrosion cracking above about 60°C. Considered resistant to potable water with up to about 1000mg/L chlorides at ambient temperatures, reducing to about 500mg/L at 60°C.

316 is usually regarded as the standard “marine grade stainless steel”, but it is not resistant to warm sea water. In many marine environments 316 does exhibit surface corrosion, usually visible as brown staining. This is particularly associated with crevices and rough surface finish.

Heat Resistance

Good oxidation resistance in intermittent service to 870°C and in continuous service to 925°C. Continuous use of 316 in the 425-860°C range is not recommended if subsequent aqueous corrosion resistance is important. Grade 316L is more resistant to carbide precipitation and can be used in the above temperature range. Grade 316H has higher strength at elevated temperatures and is sometimes used for structural and pressure-containing applications at temperatures above about 500°C.

Heat Treatment

Solution Treatment (Annealing) – Heat to 1010-1120°C and cool rapidly. These grades cannot be hardened by thermal treatment.

Welding

Excellent weldability by all standard fusion methods, both with and without filler metals. AS 1554.6 pre-qualifies welding of 316 with Grade 316 and 316L with Grade 316L rods or electrodes (or their high silicon equivalents). Heavy welded sections in Grade 316 require post-weld annealing for maximum corrosion resistance. This is not required for 316L. Grade 316Ti may also be used as an alternative to 316 for heavy section welding.

Machining

A “Ugima” improved machinability version of grade 316 is available in round and hollow bar products. This machines significantly better than standard 316 or 316L, giving higher machining rates and lower tool wear in many operations.

Dual Certification

It is common for 316 and 316L to be stocked in “Dual Certified” form – mainly in plate and pipe. These items have chemical and mechanical properties complying with both 316 and 316L specifications. Such dual certified product does not meet 316H specification and may be unacceptable for high temperature applications.

Applications

Typical applications include:

  • Food preparation equipment particularly in chloride environments.
  • Laboratory benches & equipment.
  • Coastal architectural panelling, railings & trim.
  • Stainless Steel 316L Pipe fittings, Stainless Steel 316 Pipe fittings, Stainless Steel 316 Flanges.
  • Chemical containers, including for transport.
  • Heat Exchangers.
  • Woven or welded screens for mining, quarrying & water filtration.
  • Threaded fasteners.
  • Springs.

0 comments:

Post a Comment